WELCOME TO MATH TESTING.
Formula display
Formula:
success
1 | $T(n) = \Theta(n)$ |
\(T(n) = \Theta(n)\)
\[T(n) = \Theta(n)\]
1 | $$R{m \times n} = U{m \times m} S{m \times n} V{n \times n}’$$ |
\[R{m \times n} = U{m \times m} S{m \times n} V{n \times n}’\] \[R_{m \times n} = U_{m \times m} S_{m \times n} V_{n \times n}'\]
1 | $$d_{1}=\frac{\ln(S_{t}/K) +(r+\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}$$ |
\[d_{1}=\frac{\ln(S_{t}/K) +(r+\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}\]
\[d\_{1}=\frac{\ln(S\_{t}/K) +(r+\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}\]
1 | $$T(n) = \Theta(n) + \sum{i=0}^{n-1}{O({n}{i}^2)}$$ |
\[T(n) = \Theta(n) + \sum{i=0}^{n-1}{O({n}{i}^2)}\] \[T(n) = \Theta(n) + \sum_{i=0}^{n-1}{O({n}_{i}^2)}\] \[T(n) = \Theta(n) + \sum\_{i=0}^{n-1}{O({n}\_{i}^2)}\]
Repeating fractions:
success
1 | $$ |
\[ frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } } \]
Summation notation:
success
1 | $$ |
\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
Greek Letters:
success
1 | $$ |
\[ \ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega\ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi \]
Symbols:
success
1 | $$ \surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ |
\[ \surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup \]
Calculus:
success
1 | $$ |
\[ f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \]
Cross Product:
success
1 | $$ |
\[ \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]
Matrices:
success
1 | $$ |
\[ \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]
Long Formula display
1 | $$ |
\[ \begin{align} \pi^{-z}\zeta(2z)\Gamma(z)&=\int_0^{+\infty}\left(\sum_{n=1}^\infty e^{-\pi n^2s}\right)s^{z-1}ds\\\\ &=\int_0^{+\infty}\psi(s)s^{z-1}ds \end{align} \]
Thus
\[ \begin{align} \pi^{-z}\zeta(2z)\Gamma(z)&=\int_0^{+\infty}\psi(s)s^{z-1}ds\\\\ &=\int_1^{+\infty}\psi(s)s^{z-1}ds+\int_0^1\psi(s)s^{z-1}ds\\\\ &=\int_1^{+\infty}\psi(s)s^{z-1}ds+\int_1^{+\infty}\psi\left(\frac{1}{s}\right)s^{1-z}\frac{ds}{s^2}\\\\ &=\int_1^{+\infty}\psi(s)s^{z-1}ds+\int_1^{+\infty}\left(\psi(s)\sqrt{s}+\frac{\sqrt{s}-1}{2}\right)s^{-1-z}ds\\\\ &=\int_1^{+\infty}\psi(s)(s^{z-1}+s^{-z-\frac{1}{2}})ds+\int_1^{+\infty}\frac{s^{-z-\frac{1}{2}}-s^{-z-1}}{2}ds\\\\ &=\int_1^{+\infty}\psi(s)(s^{z-1}+s^{-z-\frac{1}{2}})ds+\frac{1}{2z(2z-1)} \end{align} \]
Inline formula
success
1 | This is an example for $x_mu$ and $y_mu$. This is an example for $x_{mu}$ and $y_{mu}$. This is an example for $x\_mu$ and $y\_mu$. $R{m \times n} = U{m \times m} S{m \times n} V{n \times n}’$,$d_{1}=\frac{\ln(S_{t}/K)+(r+\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}$。 |
This is an example for \(x_mu\) and \(y_mu\). This is an example for \(x_{mu}\) and \(y_{mu}\). This is an example for \(x\_mu\) and \(y\_mu\). \(R{m \times n} = U{m \times m} S{m \times n} V{n \times n}’\),\(d_{1}=\frac{\ln(S_{t}/K)+(r+\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}\)。
Numbering and referring equations
success
success
1 | $$ |
\[ \begin{eqnarray} \nabla\cdot\vec{E} &=& \frac{\rho}{\epsilon_0} \\ \nabla\cdot\vec{B} &=& 0 \\ \nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \\ \nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\epsilon_0\frac{\partial E}{\partial t} \right) \end{eqnarray} \]
The famous matter-energy equation \(\ref{eq1}\) proposed by Einstein ...
1 | $$ |
\[ \begin{equation} \label{eq1} e=mc^2 \end{equation} \]
For multi-line equations shown in Eq. \(\eqref{eq2}\), inside the equation
environment, you can use the aligned
environment to split it into multiple lines:
1 | $$ |
\[ \begin{equation} \begin{aligned} a &= b + c \\ &= d + e + f + g \\ &= h + i \end{aligned} \end{equation} \label{eq2} \]
We can use align
environment to align multiple equations shown in Eq. \(\eqref{eq5}\). Each of these equations will get its own numbers.
1 | $$ |
\[ \begin{align} a &= b + c \label{eq3} \\ x &= yz \label{eq4}\\ l &= m - n \label{eq5} \end{align} \]
In the align
environment, if you do not want to number one or some equations shown in Eq. \(\eqref{eq6}\), just use \nonumber
right behind these equations. Like the following:
1 | $$ |
\[ \begin{align} -4 + 5x &= 2+y \nonumber \\ w+2 &= -1+w \label{eq6} \\ ab &= cb \end{align} \]
Sometimes, you want to use more “exotic” style to refer your equation shown in Eq. \(\eqref{eq_tag}\). You can use \tag{}
to achieve this. For example:
1 | $$ |
\[ x+1\over\sqrt{1-x^2} \tag{i} \label{eq_tag} \]